4 resultados para Pulse Pressure
Resumo:
Pulse fishing may be a global optimal strategy in multicohort fisheries. In this article we compare the pulse fishing solutions obtained by using global numerical methods with the analytical stationary optimal solution. This allows us to quantify the potential benefits associated with the use of periodic fishing in the Northern Stock of hake. Results show that: first, management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal; second, global optimal solutions would imply, in a cyclical manner, the closure of the fishery for some periods and third, second best stationary policies with stable employment only reduce optimal present value of discounted profit in a 2%.
Resumo:
Optimal management in a multi-cohort Beverton-Holt model with any number of age classes and imperfect selectivity is equivalent to finding the optimal fish lifespan by chosen fallow cycles. Optimal policy differs in two main ways from the optimal lifespan rule with perfect selectivity. First, weight gain is valued in terms of the whole population structure. Second, the cost of waiting is the interest rate adjusted for the increase in the pulse length. This point is especially relevant for assessing the role of selectivity. Imperfect selectivity reduces the optimal lifespan and the optimal pulse length. We illustrate our theoretical findings with a numerical example. Results obtained using global numerical methods select the optimal pulse length predicted by the optimal lifespan rule.
Resumo:
We consider a job contest in which candidates go through interviews (cheap talk) and are subject to reference checks. We show how competitive pressure - increasing the ratio of "good" to "bad" type candi- dates - can lead to a vast increase in lying and in some cases make bad hires more likely. As the number of candidates increases, it becomes harder to in- duce truth-telling. The interview stage becomes redundant if the candidates, a priori, know each others' type or the result of their own reference check. Finally, we show that the employer can bene t from committing not to reject all the applicants.
Resumo:
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Omega/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors.