2 resultados para Precision positioning
Resumo:
In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.
Resumo:
[ES]El proyecto presentado a continuación muestra la elaboración de un core para ser embebido dentro de las denominadas FPGAs (Field Programmable Gate Array), cuya finalidad es la creación de una referencia temporal, en arquitectura de 64bits, gracias a un módulo GPS (Global Positioning System), lo más cercana posible al orden de las decenas de nano-segundos, para poder ser insertado en un equipo PTP-Master (Precision Time Protocol - Master) (IEEE (Institute of Electrical and Electronics Engineers) - 1588), a bajo coste y con calidad comparable a la de los dispositivos Grand Master.