2 resultados para Petroleum in submerged lands
Resumo:
[ES] El presente artículo pretende aportar nuevos datos sobre la ganadería en los territorios vascos durante la Edad Moderna. Ante todo se trata de romper con falsos paradigmas que se han venido repitiendo durante largo tiempo, aportando datos inéditos. Los clásicos de la historiografía vasca siempre han recalcado el carácter rural y agrario de la economía vasca; a pesar de ello, actividades como la ganadería jamás han ocupado un espacio primordial como objeto de estudio entre los historiadores, que en muchos casos han aceptado las teorías de etnógrafos y antropólogos sin contrastarlas. La ganadería en tierras vascas siguió modelos cantábricos, que ya vienen siendo estudiados desde algunas décadas por los historiadores gallegos, asturianos o cántabros; escuelas que han establecido nuevas metodologías para el estudio de la ganadería, las cabañas predominantes, el régimen de explotación, su impacto económico, etc., y cuyo ejemplo desgraciadamente no ha sido secundado en el caso vasco.
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.