4 resultados para Perturbation
Resumo:
This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.
Resumo:
We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.
Resumo:
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.
Resumo:
Hartle's model provides the most widely used analytic framework to describe isolated compact bodies rotating slowly in equilibrium up to second order in perturbations in the context of General Relativity. Apart from some explicit assumptions, there are some implicit, like the "continuity" of the functions in the perturbed metric across the surface of the body. In this work we sketch the basics for the analysis of the second order problem using the modern theory of perturbed matchings. In particular, the result we present is that when the energy density of the fluid in the static configuration does not vanish at the boundary, one of the functions of the second order perturbation in the setting of the original work by Hartle is not continuous. This discrepancy affects the calculation of the change in mass of the rotating star with respect to the static configuration needed to keep the central energy density unchanged.