2 resultados para Perfectly Plastic
Resumo:
Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.
Resumo:
This paper presents a theoretical and experimental study of multidirectional steel fibers reinforced concrete slabs (SFRC). The study is based on a real building application using SFRC flag slabs. For the evaluation of the slabs bearing capacity, plastic calculations are performed both at section and structure levels. The section analysis uses the perfect plastic stress-strain diagram, with reference to the values of the strength characteristics of SFRC based on previous jobs that used similar fibers and dosages. In the structure analysis the plastic yield lines method has been used. This method relates the section last bearing moment and the plastic collapse load. The experimental campaign has consisted of the testing of six 2 m. diameter circular shaped slabs prototypes, and has allowed to verify the reference resistance used in the calculations.