5 resultados para Oscillation, functional ordinary differential equation
Resumo:
2nd International Conference on Education and New Learning Technologies
Resumo:
A new coupled fixed point theorem related to the Pata contraction for mappings having the mixed monotone property in partially ordered complete metric spaces is established. It is shown that the coupled fixed point can be unique under some extra suitable conditions involving mid point lower or upper bound properties. Also the corresponding convergence rate is estimated when the iterates of our function converge to its coupled fixed point.
Resumo:
Composition methods are useful when solving Ordinary Differential Equations (ODEs) as they increase the order of accuracy of a given basic numerical integration scheme. We will focus on sy-mmetric composition methods involving some basic second order symmetric integrator with different step sizes [17]. The introduction of symmetries into these methods simplifies the order conditions and reduces the number of unknowns. Several authors have worked in the search of the coefficients of these type of methods: the best method of order 8 has 17 stages [24], methods of order 8 and 15 stages were given in [29, 39, 40], 10-order methods of 31, 33 and 35 stages have been also found [24, 34]. In this work some techniques that we have built to obtain 10-order symmetric composition methods of symmetric integrators of s = 31 stages (16 order conditions) are explored. Given some starting coefficients that satisfy the simplest five order conditions, the process followed to obtain the coefficients that satisfy the sixteen order conditions is provided.
Resumo:
This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.
Resumo:
This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.