3 resultados para Optical-optical conversion efficiency


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]For a good development of elastic optical networks, the design of flexible optical switching nodes is required. This work analyses the previously proposed flexible architectures and, based on the most appropriate, which is the Architecture on Demand (AoD), proposes a specific configuration of the node that includes spatial and spectral switching and the wavelength conversion functionality with a low blocking probability and the minimum amount of modules; the characteristics of the traffic that the designed node is able to cope with are specified in the last chapter. An evaluation of the designed node is also done, and, compared to the other architectures, it is shown that the Architecture on Demand gives better results than others and that it has a higher potential for future developments.