3 resultados para Optical character recognition devices.
Resumo:
En esta tesis de máster se presenta una metodología para el análisis automatizado de las señales del sonar de largo alcance y una aplicación basada en la técnica de reconocimiento óptico de Optical Character Recognition, caracteres (OCR). La primera contribución consiste en el análisis de imágenes de sonar mediante técnicas de procesamiento de imágenes. En este proceso, para cada imagen de sonar se extraen y se analizan las regiones medibles, obteniendo para cada región un conjunto de características. Con la ayuda de los expertos, cada región es identi cada en una clase (atún o no-atún). De este modo, mediante el aprendizaje supervisado se genera la base de datos y, a su vez, se obtiene un modelo de clasi cación. La segunda contribución es una aplicación OCR que reconoce y extrae de las capturas de pantalla de imágenes de sonar, los caracteres alfanuméricos correspondientes a los parámetros de situación (velocidad, rumbo, localización GPS) y la confi guración de sonar (ganancias, inclinación, ancho del haz). El objetivo de este proceso es el de maximizar la e ficiencia en la detección de atún en el Golfo de Vizcaya y dar el primer paso hacia el desarrollo de un índice de abundancia de esta especie, el cual esté basado en el procesamiento automático de las imágenes de sonar grabadas a bordo de la ota pesquera durante su actividad pesquera rutinaria.
Resumo:
211 p. :il.
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.