1 resultado para Oclusao normal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (3)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- Boston University Digital Common (3)
- Brock University, Canada (10)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (51)
- CentAUR: Central Archive University of Reading - UK (59)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (47)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Duke University (8)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (61)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (15)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (65)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (147)
- Queensland University of Technology - ePrints Archive (81)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (177)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (19)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (12)
- Universidad del Rosario, Colombia (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Metodista de São Paulo (9)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (24)
- University of Southampton, United Kingdom (5)
- WestminsterResearch - UK (1)
Resumo:
We study the supercore of a system derived from a normal form game. For the case of a finite game with pure strategies, we define a sequence of games and show that the supercore of that system coincides with the set of Nash equilibrium strategy profiles of the last game in the sequence. This result is illustrated with the characterization of the supercore for the n-person prisoners’ dilemma. With regard to the mixed extension of a normal form game, we show that the set of Nash equilibrium profiles coincides with the supercore for games with a finite number of Nash equilibria. For games with an infinite number of Nash equilibria this need not be no longer the case. Yet, it is not difficult to find a binary relation which guarantees the coincidence of these two sets.