5 resultados para Nature and Poetry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving involves a basic two-fold goal: the ability to exist as an individual in one's own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, where attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics, in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor toward which dyadic states tend to move, and well-being when this attractor is in balance with the individuals' attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting that supports clients to become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple) and therapist, strategies to co-negotiate their self-organization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.