2 resultados para National Cancer Institute (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] El presente Trabajo de Fin de Grado trata, en primera instancia, de proporcionar una visión detallada sobre los diferentes tipos de cáncer en mujeres, detallando los más padecidos entre ellas y facilitando una serie de datos relacionados con la incidencia, la mortalidad y la prevalencia a cinco años. Además de analizar los diversos factores que favorecen la aparición del cáncer en las personas. En la segunda parte del trabajo, se analiza a través de la especificación y estimación de modelos paramétricos, el efecto de diferentes variables sobre la supervivencia a esta enfermedad en las mujeres. Entre las variables que se han tenido en cuenta están la edad en el momento en que se diagnostica el cáncer, el tamaño del mismo y el grado, además de variables como la raza, si la mujer es de origen hispano y el estado civil. Los datos utilizados en el presente trabajo han sido obtenidos de la base de datos: SEER CANCER RESEARCH DATABASE, del Instituto Nacional de Cáncer de Estados Unidos (2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recently, with the access of low toxicity biological and targeted therapies, evidence of the existence of a long-term survival subpopulation of cancer patients is appearing. We have studied an unselected population with advanced lung cancer to look for evidence of multimodality in survival distribution, and estimate the proportion of long-term survivors. Methods: We used survival data of 4944 patients with non-small-cell lung cancer (NSCLC) stages IIIb-IV at diagnostic, registered in the National Cancer Registry of Cuba (NCRC) between January 1998 and December 2006. We fitted one-component survival model and two-component mixture models to identify short-and long-term survivors. Bayesian information criterion was used for model selection. Results: For all of the selected parametric distributions the two components model presented the best fit. The population with short-term survival (almost 4 months median survival) represented 64% of patients. The population of long-term survival included 35% of patients, and showed a median survival around 12 months. None of the patients of short-term survival was still alive at month 24, while 10% of the patients of long-term survival died afterwards. Conclusions: There is a subgroup showing long-term evolution among patients with advanced lung cancer. As survival rates continue to improve with the new generation of therapies, prognostic models considering short-and long-term survival subpopulations should be considered in clinical research.