1 resultado para Multi- Choice mixed integer goal programming
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (24)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (18)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (41)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (53)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CentAUR: Central Archive University of Reading - UK (42)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (5)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (9)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (7)
- Duke University (2)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (63)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (7)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Academico Digital UANL (2)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (26)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (165)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- Scielo Saúde Pública - SP (2)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (19)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (48)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (14)
- Université de Montréal (3)
- Université de Montréal, Canada (32)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (24)
- University of Washington (3)
Resumo:
When it comes to information sets in real life, often pieces of the whole set may not be available. This problem can find its origin in various reasons, describing therefore different patterns. In the literature, this problem is known as Missing Data. This issue can be fixed in various ways, from not taking into consideration incomplete observations, to guessing what those values originally were, or just ignoring the fact that some values are missing. The methods used to estimate missing data are called Imputation Methods. The work presented in this thesis has two main goals. The first one is to determine whether any kind of interactions exists between Missing Data, Imputation Methods and Supervised Classification algorithms, when they are applied together. For this first problem we consider a scenario in which the databases used are discrete, understanding discrete as that it is assumed that there is no relation between observations. These datasets underwent processes involving different combina- tions of the three components mentioned. The outcome showed that the missing data pattern strongly influences the outcome produced by a classifier. Also, in some of the cases, the complex imputation techniques investigated in the thesis were able to obtain better results than simple ones. The second goal of this work is to propose a new imputation strategy, but this time we constrain the specifications of the previous problem to a special kind of datasets, the multivariate Time Series. We designed new imputation techniques for this particular domain, and combined them with some of the contrasted strategies tested in the pre- vious chapter of this thesis. The time series also were subjected to processes involving missing data and imputation to finally propose an overall better imputation method. In the final chapter of this work, a real-world example is presented, describing a wa- ter quality prediction problem. The databases that characterized this problem had their own original latent values, which provides a real-world benchmark to test the algorithms developed in this thesis.