3 resultados para Mott Insulators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full retarded electromagnetic force experienced by swift electrons moving parallel to planar boundaries is revisited, for both metallic and dielectric targets, with special emphasis on the consequences in electron microscopy experiments. The focus is placed on the sign of the transverse force experienced by the electron beam as a function of the impact parameter. For point probes, the force is found to be always attractive. The contribution of the induced magnetic field and the causality requirements of the target dielectric response, given by the Kramers-Kronig (K-K) relations, prove to be crucial issues at small impact parameters. For spatially extended probes, repulsive forces are predicted for close trajectories, in agreement with previous works. The force experienced by the target is also explored, with the finding that in insulators, the momentum associated to Cherenkov radiation (CR) is relevant at large impact parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through a combination of experimental techniques we show that the topmost layer of the topological insulator TlBiSe2 as prepared by cleavage is formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile Tl atoms at room temperature. No trivial surface states are observed in photoemission at low temperatures, which suggests that these islands cannot be regarded as a clear surface termination. The topological surface state is, however, clearly resolved in photoemission experiments. This is interpreted as direct evidence of its topological self-protection and shows the robust nature of the Dirac cone-like surface state. Our results can also help explain the apparent mass acquisition in S-doped TlBiSe2.