6 resultados para Milk as food


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The concept of sustainability when referring to food production rests, in general, on 3 main aspects: 1) respect for the environment; 2) economic and social benefits for all involved in production; and 3) production of sufficient quantity of quality food at an accessible price. In this contribution we focus on the main aspects of the traditional sheep's milk and cheese production (under the Denomination of Origin Idiazabal Cheese) in the Basque Country that contribute primarily to its sustainability. It is based on the local latxa or carranzana breeds of sheep, adapted to the mountainous terrain. The sheepherder takes advantage of local resources to reduce management costs by combining indoor dry forage and concentrates with outdoor grazing throughout lactation, according to local pasture availability, and thus avoiding having to buy large amounts of feed. This system facilitates recycling of manure, fertilising pastures and forest at the same time. Use of local breeds helps maintain biodiversity of sheep breeds. Cheese is produced industrially (44.5% of the total cheese produced in 2008) from milk of many flocks, or artisanally (38.3%) by the sheepherders with the milk from their own flocks. Transforming their own milk into cheese is advantageous for the following reasons: 1) higher economic returns as compared to selling the milk to cheese factories because cheese price directly sold to consumers is more competitive than industrial cheese sold in supermarkets; 2) increases the value of women's work (over 80% of the cheese makers are women) in the community and their self-esteem; 3) it creates rural jobs and contributes to rural development; 4) we have demonstrated both with experimental and commercial flocks that part-time grazing allows the sheepherder to obtain high yields of milk, and cheese, of high nutritional and functional quality. Currently a less sustainable, intensive sheep's milk production with foreign, imported breeds kept indoors constantly is gaining favour among milk producers because of its perceived higher economic profitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo se encuentra bajo la licencia Creative Commons Attribution 3.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present work was both to analyze composition of Spanish celiac women and to study the food habits and gluten-free diet of these celiac patients, in order to determine whether they achieve a balanced and healthy diet as well as to highlight nutritional qualitative and/or quantitative differences. 54 adult celiac women (34 +/- 13 years) took part in the six-month study. Height, weight and body composition were measured. An analysis of energy consumption and of the macronutrient distribution of their diet was carried out. Their fulfillment of micronutrient intake recommendations was verified. Participants showed a Body Mass Index of 21.6 +/- 2.4 kg/m(2). Energy Intake was slightly lower than the Dietary Reference Intakes. Excessive protein apart from over-consumption of fat was observed. More than three quarters of participants consumed meat in excess. Carbohydrate consumption along with that of fiber was below recommended levels. Vitamin D, iron, and iodine had a low percentage of recommendation compliance. In general, participants followed the recommendations of dairy products and fruit intake whereas vegetable consumption was not enough for the vast majority. We conclude that although the diet of celiac women does not differ much from the diet of general population, some considerations, such as reducing fat and protein consumption and increasing fiber intake, must be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).