3 resultados para Microbial community composition
Resumo:
Soil microbial community changes associated to conventional and organic farming of two relevant crops (Beta vulgaris and Solanum lycopersicum) were analysed through 16s rRNA amplicon sequencing. This study revealed microbial communities in the agricultural soils studied to be similar to other reported nutrient-rich microbiomes, and some significant differences between the microbial communities associated to the two farming practices were found. Some phyla (Chloroflexi and Thermi) were found to be present in different abundances according to soil treatment. As chloroplast interference can be a stumbling block in plant-associated 16s rRNA amplicon metagenomics analysis of aerial plant tissues, two protocols for bacterial cell detachment (orbital shaking and ultrasound treatment) and two protocols for microbial biomass recovery (centrifugation and filtration) were tested regarding their efficiency at excluding plant-DNA. An alternative method to the one proposed by Rastogi et al (2010) for evaluating the chloroplast-amplicon content in post-PCR samples was tested, and the method revealed that filtration was the most efficient protocol in minimising chloroplast interference.
Resumo:
Blowflies are insects of forensic interest as they may indicate characteristics of the environment where a body has been laying prior to the discovery. In order to estimate changes in community related to landscape and to assess if blowfly species can be used as indicators of the landscape where a corpse has been decaying, we studied the blowfly community and how it is affected by landscape in a 7,000 km(2) region during a whole year. Using baited traps deployed monthly we collected 28,507 individuals of 10 calliphorid species, 7 of them well represented and distributed in the study area. Multiple Analysis of Variance found changes in abundance between seasons in the 7 analyzed species, and changes related to land use in 4 of them (Calliphora vomitoria, Lucilia ampullacea, L. caesar and L. illustris). Generalised Linear Model analyses of abundance of these species compared with landscape descriptors at different scales found only a clear significant relationship between summer abundance of C. vomitoria and distance to urban areas and degree of urbanisation. This relationship explained more deviance when considering the landscape composition at larger geographical scales (up to 2,500 m around sampling site). For the other species, no clear relationship between land uses and abundance was found, and therefore observed changes in their abundance patterns could be the result of other variables, probably small changes in temperature. Our results suggest that blowfly community composition cannot be used to infer in what kind of landscape a corpse has decayed, at least in highly fragmented habitats, the only exception being the summer abundance of C. vomitoria.
Resumo:
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.