2 resultados para Mercury Poisoning.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dinoflagellate Alexandrium minutum and the haptophyte Prymnesium parvum are well known for their toxin production and negative effects in marine coastal environments. A. minutum produces toxins which cause paralytic shellfish poisoning in humans and can affect copepods, shellfish and other marine organisms. Toxins of P. parvum are associated with massive fish mortalities resulting in negative impacts on the marine ecosystem and large economic losses in commercial aquaculture. The aim of this work is to improve our knowledge about the reliability of the use of marine invertebrate bioassays to detect microalgae toxicity, by performing: (i) a 24- to 48-h test with the brine shrimp Artemia franciscana; (ii) a 48-hour embryo-larval toxicity test with the sea urchin Paracentrotus lividus; and (iii) a 72-h test with the amphipod Corophium multisetosum. The results indicate that A. franciscana and P. lividus larvae are sensitive to the toxicity of A. minutum and P. parvum. LC50 comparison analysis between the tested organisms reveals that A. franciscana is the most sensitive organism for A. minutum. These findings suggest that the use of different organizational biological level bioassays appears to be a suitable tool for A. minutum and P. parvum toxicity assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The management of municipal solid waste (MSW), particularly the role of incineration, is currently a subject of public debate. Incineration shows to be a good alternative of reducing the volume of waste and eliminating certain infectious components. Moreover, Municipal Waste Incinerators (MWI), are reported to be highly hygienic and apart from that MWIs are immediately effective in terms of transport (incinerators can be built close to the waste sources) and incineration's nature. Nevertheless, the emissions of many hazardous substances make the Municipal Waste Incineration (MWI) plants to be unpopular. Metals (especially lead, manganese, cadmium, chromium and mercury) are concentrated in fly and bottom ashes. Furthermore, incomplete combustion produces a wide variety of potentially hazardous organic compounds, such as aldehydes, polycyclic aromatic hydrocarbons (PAH), chlorinated hydrocarbons including polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF), and even acid gases, including NOx. Many of these hazardous substances are carcinogenic and some have direct systemic toxicity.