10 resultados para Magnetic torques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1-30 mu m in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with –NH2 groups. The resulting biocatalyst combines the relevant catalytic properties of CLEAs (as great stability and feasibility for their reutilization) and the magnetic character, and thus the final product (mCLEAs) are superparamagnetic particles of a robust catalyst which is more stable than the free enzyme, easily recoverable from the reaction medium and reusable for new catalytic cycles. We have studied the main properties of this biocatalyst and we have assessed its utility to catalyze transesterification reactions to obtain biodiesel from non-edible vegetable oils including unrefined soybean, jatropha and cameline, as well as waste frying oil. Using 1% mCLEAs (w/w of oil) conversions near 80% were routinely obtained at 30°C after 24 h of reaction, this value rising to 92% after 72 h. Moreover, the magnetic biocatalyst can be easily recovered from the reaction mixture and reused for at least ten consecutive cycles of 24 h without apparent loss of activity. The obtained results suggest that mCLEAs prepared from CALB can become a powerful biocatalyst for application at industrial scale with better performance than those currently available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several pseudo-binary RxR2-x'Fe-17 alloys (with R = Y, Ce, Pr, Gd and Dy) were synthesized with rhombohedral Th2Zn17-type crystal structure determined from x-ray and neutron powder diffraction. The choice of compositions was done with the aim of tuning the Curie temperature (T-C) in the 270 +/- 20 K temperature range, in order to obtain the maximum magneto-caloric effect around room temperature. The investigated compounds exhibit broad isothermal magnetic entropy changes, Delta S-M(T), with moderate values of the refrigerant capacity, even though the values of Delta S-M(Peak) are relatively low compared with those of the R2Fe17 compounds with R = Pr or Nd. The reduction on the Delta S-M(Peak) is explained in terms of the diminution in the saturation magnetization value. Furthermore, the Delta S-M(T) curves exhibit a similar caret-like behavior, suggesting that the magneto-caloric effect is mainly governed by the Fe-sublattice. A single master curve for Delta S-M/Delta S-M(Peak)(T) under different values of the magnetic field change are obtained for each compound by rescaling of the temperature axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4-dicarboxylic acid (H(2)abd) as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs) have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.