8 resultados para Machinery, Kinematics of.
Resumo:
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.
Resumo:
Despite the clinical success of acute lymphoblastic leukemia (ALL) therapy, toxicity is frequent. Therefore, it would be useful to identify predictors of adverse effects. In the last years, several studies have investigated the relationship between genetic variation and treatment-related toxicity. However, most of these studies are focused in coding regions. Nowadays, it is known that regions that do not codify proteins, such as microRNAs (miRNAs), may have an important regulatory function. MiRNAs can regulate the expression of genes affecting drug response. In fact, the expression of some of those miRNAs has been associated with drug response. Genetic variations affecting miRNAs can modify their function, which may lead to drug sensitivity. The aim of this study was to detect new toxicity markers in pediatric B-ALL, studying miRNA-related polymorphisms, which can affect miRNA levels and function. We analyzed 118 SNPs in pre-miRNAs and miRNA processing genes in association with toxicity in 152 pediatric B-ALL patients all treated with the same protocol (LAL/SHOP). Among the results found, we detected for the first time an association between rs639174 in DROSHA and vomits that remained statistically significant after FDR correction. DROSHA had been associated with alterations in miRNAs expression, which could affect genes involved in drug transport. This suggests that miRNA-related SNPs could be a useful tool for toxicity prediction in pediatric B-ALL.
Resumo:
Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations.
Resumo:
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Resumo:
Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Resumo:
Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.
Resumo:
BCL-2 family proteins are key regulators of the mitochondrial apoptotic machinery, controlling the mitochondrial outer membrane (MOM) permeabilization (MOMP). BCL-2 related Ovarian Killer (BOK) is a poorly understood pro-apoptotic member of this protein family. It has been reported that BOK localizes predominantly (although not exclusively) at membranes of the endoplasmic reticulum and of the Golgi apparatus. However, it is unclear whether BOK also operates at the MOM to promote apoptosis, as other pro-apoptotic BCL-2 family members do. Basing on the fact that the other two BAX-like pro-apoptotic members have been reported to oligomerize in order to induce MOMP, site-directed mutagenesis was used to generate two point mutations that predictably eliminated BOK’s oligomerization capacity. Then, the effect of such mutations on BOK’s membrane activity was examined using fluorescence spectroscopy.
Resumo:
In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzers in industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed