9 resultados para Lower temperatures
Resumo:
[EN]Most of the information indicating ageing improves tenderness has been collected on the loin and rib-eye muscles over relatively short ageing times, assuming that all muscles will react similarly. In the present study, the effect of extended ageing times on instrumental texture (56 d) and sensory characteristics (42 d) of six different beef sub-primals [striploin (SL), inside round (IR), outside round (OR), eye of round (ER), blade eye (BE) and chuck tender (CT)] was studied. The effects of two ageing temperatures (1and 58C) were also compared. In general, ageing increased tenderness (P<0.05) of SL, BE, ER and CT sub-primals, although BE shear force increased after 42 d of ageing. On the other hand, ageing had no effect on IR tenderness (P<0.05) and resulted in a decrease in tenderness of OR (P<0.05) until day 35, with a later increase after 42 d of ageing. Increasing ageing temperature (58C) had limited effect on tenderness, but ageing time and temperature increases led to lower flavour and higher off-flavour intensity (P<0.05) of the studied sub-primals. These results suggest that cutspecific maximum ageing times and rigid adherence to temperature maximums would be of benefit to optimize postslaughter processes and meat quality
Resumo:
27 p.
Resumo:
31 p.
Resumo:
Power Point presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015
Resumo:
In the present work, the nematic glassy state of the non-symmetric LC dimer -(4-cyanobiphenyl-4-yloxy)--(1-pyrenimine-benzylidene-4-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of -alumina nanoparticles, in several concentrations.
Resumo:
[EN] Protein Kinase G (PKG) or cGMP-dependent protein kinases (PKG) have been shown to play an important role in resistance to abiotic stressors such as high temperatures or oxygen deprivation in Drosophila melanogaster. In Drosophila, the foraging gene encodes a PKG; natural variants for this gene exist, which differ in the level of expression of PKG: rovers (forR allele) which express high PKG levels, and sitters (forS allele) which express lower PKG levels. This project explores the differences in recovery from short periods of anoxia between natural variants (focusing on forS2, flies with a sitter gene in a rover background), as well as mutants with insertions in the foraging gene and RNAi recombinants that show a reduced PKG expression. The parameters measured were time to recovery and level of activity after anoxia. The results showed lower activity after anoxia in sitters than in rovers, reflecting a worse recovery from the anoxic coma in flies with lower PKG levels.
Resumo:
Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.
Resumo:
Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18 degrees S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.
Resumo:
In this work we perform for the first time a palaeoenvironmental and biostratigraphic analysis of the lower Miocene alluvial deposits of the Cenicero section (NW sector of the Ebro Basin; N Iberian Peninsula), based on the ostracod and micromammal assemblages. One of the main characteristics of this section is the unusual abundance on non-reworked ostracods present in the studied samples compared to other European sequences of similar age and sedimentary environment. This fact has allowed us to develop precise palaeoenvironmental reconstructions. The variations of the identified ostracod assemblages, defined by species such as Cyclocypris laevis, Ilyocypris bradyi, Ilyocypris gibba, Limnocythere sp. or Pseudocandona parallela, record the development of small, ephemeral and shallow ponds in a distal alluvial and/or floodplain environment. Towards the upper part of the section the ponds appear to be less ephemeral, being the aquatic systems more stable for ostracods development. Variations in the water temperature and salinity have been observed along the section, which are related to changes in the local pluviometric regime. On the other hand, the presence of micromammals in one of the studied samples has allowed the precise dating of this section. Thus, the presence of Armantomys daamsi dates the Cenicero section as Agenian (lower Miocene), local zone Y2 (MN2).