1 resultado para Library and information profession
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (27)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (3)
- Archive of European Integration (34)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (18)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (48)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (14)
- Digital Commons @ Winthrop University (42)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (10)
- DigitalCommons@The Texas Medical Center (42)
- DigitalCommons@University of Nebraska - Lincoln (21)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (184)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (2)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (6)
- Open University Netherlands (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (220)
- Repositorio Académico de la Universidad Nacional de Costa Rica (9)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (10)
- University of Michigan (25)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
[EN]The generation of spikes by neurons is energetically a costly process and the evaluation of the metabolic energy required to maintain the signaling activity of neurons a challenge of practical interest. Neuron models are frequently used to represent the dynamics of real neurons but hardly ever to evaluate the electrochemical energy required to maintain that dynamics. This paper discusses the interpretation of a Hodgkin-Huxley circuit as an energy model for real biological neurons and uses it to evaluate the consumption of metabolic energy in the transmission of information between neurons coupled by electrical synapses, i.e., gap junctions. We show that for a single postsynaptic neuron maximum energy efficiency, measured in bits of mutual information per molecule of adenosine triphosphate (ATP) consumed, requires maximum energy consumption. For groups of parallel postsynaptic neurons we determine values of the synaptic conductance at which the energy efficiency of the transmission presents clear maxima at relatively very low values of metabolic energy consumption. Contrary to what could be expected, the best performance occurs at a low energy cost.