3 resultados para Lagrange multipliers
Resumo:
In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.
Resumo:
One of the major concerns in an Intelligent Transportation System (ITS) scenario, such as that which may be found on a long-distance train service, is the provision of efficient communication services, satisfying users' expectations, and fulfilling even highly demanding application requirements, such as safety-oriented services. In an ITS scenario, it is common to have a significant amount of onboard devices that comprise a cluster of nodes (a mobile network) that demand connectivity to the outside networks. This demand has to be satisfied without service disruption. Consequently, the mobility of the mobile network has to be managed. Due to the nature of mobile networks, efficient and lightweight protocols are desired in the ITS context to ensure adequate service performance. However, the security is also a key factor in this scenario. Since the management of the mobility is essential for providing communications, the protocol for managing this mobility has to be protected. Furthermore, there are safety-oriented services in this scenario, so user application data should also be protected. Nevertheless, providing security is expensive in terms of efficiency. Based on this considerations, we have developed a solution for managing the network mobility for ITS scenarios: the NeMHIP protocol. This approach provides a secure management of network mobility in an efficient manner. In this article, we present this protocol and the strategy developed to maintain its security and efficiency in satisfactory levels. We also present the developed analytical models to analyze quantitatively the efficiency of the protocol. More specifically, we have developed models for assessing it in terms of signaling cost, which demonstrates that NeMHIP generates up to 73.47% less signaling compared to other relevant approaches. Therefore, the results obtained demonstrate that NeMHIP is the most efficient and secure solution for providing communications in mobile network scenarios such as in an ITS context.
Resumo:
[ES]El objetivo del presente TFG es el Análisis Dinámico de mecanismos paralelos según las necesidades de la mecatrónica. La mecatrónica requiere expresiones explícitas de las fuerzas motoras que sólo dependen de las propias posiciones, velocidades y aceleraciones en los accionamientos. Ello requiere métodos avanzados de la mecánica analítica de sólido rígido. Concretamente se han desarrollado la ecuación de Lagrange modificada (según [11]) y la ecuación de Boltzmann-Hamel modificada, siendo esta última una aportación de este TFG. Como aplicación práctica se ha programado un modelo mecatrónico para un manipulador paralelo 5R y se ha optimizado el diseño de una Multi Axis Simulation Table 3PRS.