5 resultados para Ischemic Stroke


Relevância:

100.00% 100.00%

Publicador:

Resumo:

After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. Palabras clave

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Method Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Results Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. Conclusion The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.