6 resultados para Intrinsic property
Resumo:
10 p.
Resumo:
Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.
Resumo:
We studied the phagocytic-like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic-like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment-loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c-kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic-like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic-like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin-storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic-like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.
Resumo:
In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.
Resumo:
The past years have seen an increasing debate on cooperation and its unique human character. Philosophers and psychologists have proposed that cooperative activities are characterized by shared goals to which participants are committed through the ability to understand each other’s intentions. Despite its popularity, some serious issues arise with this approach to cooperation. First, one may challenge the assumption that high-level mental processes are necessary for engaging in acting cooperatively. If they are, then how do agents that do not possess such ability (preverbal children, or children with autism who are often claimed to be mind-blind) engage in cooperative exchanges, as the evidence suggests? Secondly, to define cooperation as the result of two de-contextualized minds reading each other’s intentions may fail to fully acknowledge the complexity of situated, interactional dynamics and the interplay of variables such as the participants’ relational and personal history and experience. In this paper we challenge such accounts of cooperation, calling for an embodied approach that sees cooperation not only as an individual attitude toward the other, but also as a property of interaction processes. Taking an enactive perspective, we argue that cooperation is an intrinsic part of any interaction, and that there can be cooperative interaction before complex communicative abilities are achieved. The issue then is not whether one is able or not to read the other’s intentions, but what it takes to participate in joint action. From this basic account, it should be possible to build up more complex forms of cooperation as needed. Addressing the study of cooperation in these terms may enhance our understanding of human social development, and foster our knowledge of different ways of engaging with others, as in the case of autism.
Resumo:
This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.