4 resultados para Ingredients


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this project is going to be, as the title indicates, on the comparison of marketing policies applied by the same company in different countries and analysis of the reasons for the differences. In order to do that, I have selected the company Nestlé to analyze the marketing decisions it makes across national boundaries to market the brand of Kit Kat and keep it as a leader snack worldwide. After having analyzed the brand in all continents, I can say the execution of the strategy used by Nestlé with Kit Kat really matches the planning of the strategy which is to think globally and act locally. Nestlé uses global brand identity but, from the internal point of view, it uses local ingredients and gives autonomy to its local branches based in different countries to make pricing and distributions decisions and therefore satisfy different consumers’ needs and preferences in local environments where changes happen very rapidly. The “glocal” approach to marketing is an effective way for Nestlé Kit Kat to stay focused on the consumer in worldwide markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.