10 resultados para Immune selection
Resumo:
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 26107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
La contaminación del suelo es una de las principales amenazas para los ecosistemas y la salud humana. Actualmente, desde un punto de vista tanto económico como ambiental, la fitoestabilización es la mejor tecnología para remediar suelos contaminados con elevadas concentraciones de metales como son los suelos mineros. La fitoestabilización asistida consiste en el empleo de plantas y enmiendas orgánicas y/o inorgánicas con el fin de reducir la movilidad y la biodisponibilidad de los contaminantes y recuperar la salud de suelo. En este trabajo se han realizado ensayos en microcosmos y en campo centrándonos en la salud del suelo minero contaminado con Pb y Zn durante un proceso de fitoestabilización empleando enmiendas orgánicas (purines vacunos, gallinaza, estiércol de oveja y lodos de papelera mezclados con gallinaza) y/o la especie metalífera Festuca rubra con el objetivo de (i) estudiar las interacciones suelo-enmienda responsables de los cambios inducidos por el proceso de quimioestabilización en las propiedades físicoquímicas y biológicas del suelo, (ii) evaluar la efectividad del proceso de fitoestabilización sobre suelos vegetados y de la revegetación sobre suelos desnudos (iii) valorar la idoneidad de distintos indicadores químicos y biológicos (parámetros microbianos y de la vegetación) para monitorizar la efectividad de la fitoestabilización asistida en términos de reducción de la biodisponibilidad de metales en el suelo, mejora de la vegetación y de la recuperación de la salud del suelo. La aplicación de enmiendas al suelo minero supone una entrada de materia orgánica y nutrientes que conduce a una disminución de la biodisponibilidad de metales, facilitando la colonización de las plantas y el crecimiento de la vegetación nativa, además de estimular la actividad microbiana del suelo. El pH del suelo es un factor crítico que condiciona la movilidad de los metales y la toxicidad del suelo. Las poblaciones microbianas de las enmiendas no modificaron la diversidad funcional de las comunidades microbianas nativas de la mina. Los purines vacunos y los lodos de papelera mezclados con gallinaza son los tratamientos más efectivos en el proceso de fitoestabilización asistida bajo condiciones de campo. La gallinaza fue el tratamiento que más estimuló el crecimiento de la vegetación nativa y la colonización en los suelos desnudos. El bioensayo de elongación radical de lechuga es un test sensible, sencillo y barato para evaluar la biodisponibilidad de metal y la ecotoxicidad del suelo. Los tocoferoles son biomarcadores de exposición a metales con potencial para su implementación en bioensayos de toxicidad. Este trabajo permite concluir que la población metalífera de F. rubra, combinada con enmiendas orgánicas, es una excelente candidata para los proyectos de fitoestabilización asistida. Además, la monitorización simultánea de los parámetros fisicoquímicos y microbiológicos del suelo y de su ecotoxicidad permite una evaluación adecuada de la salud del suelo, así como la selección de enmiendas apropiadas para el desarrollo de un proceso fitoestabilizador.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Background: Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas' vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. Methods: In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. Results: In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. Conclusions: We conclude that, under our experimental conditions, TrV is unable to replicate inmice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.
Resumo:
In this paper we propose a simple method of characterizing countervailing incentives in adverse selection problems. The key element in our characterization consists of analyzing properties of the full information problem. This allows solving the principal problem without using optimal control theory. Our methodology can also be applied to different economic settings: health economics, monopoly regulation, labour contracts, limited liabilities and environmental regulation.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.
Resumo:
Editores:Micaela Muñoz-Calvo; Carmen Buesa-Gómez
Resumo:
Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.