5 resultados para INTERNAL ELECTRIC-FIELD


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES]El estándar de radiodifusión de televisión digital terrestre DVB-T (Digital Video Broadcasting - Terrestrial) es uno de los estándares más extendidos en todo el mundo. Su sucesor, DVB-T2, ha sido desplegado en 24 países y adoptado por otros 32 a lo largo de los últimos cinco años. Este despliegue ha coincidido con el rápido desarrollo de la telefonía móvil, con la que comparte la banda UHF. Debido a las limitaciones del espectro, es necesario estudiar la posibilidad de ofrecer los servicios de DVB-T2 en la banda VHF. El objetivo de este trabajo de fin de grado es estudiar los criterios de planificación de las redes DVB-T2 en la banda VHF. Para ello se analizan las áreas afectadas por el cambio de banda, como son la estimación del campo eléctrico, los características de los componentes de transmisión y recepción de la señal y los parámetros estándar. Además, se calculan las intensidades mínimas de campo y los alcances máximos de cobertura para diferentes configuraciones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + gamma-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of gamma-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a chain of 4000 silver nanoparticles embedded in a glass medium is considered, and its leftmost particle is excited by an electric field pulse of Gaussian shape. Considering Drude’s model, losses of the system are taken into account by γ factor, which stands for the Ohmic losses, and different quantities, such as frequencies of excited modes and group velocities are calculated. Besides, these results are compared to those obtained from the dispersion relation of an infinite chain. The increase of losses affects the lifetime and propagation length of the plasmon; besides, although the response dispersion relation for an infinite chain seems to remain invariable, this is not the case for a finite chain. The mismatches are bigger for higher losses. Furthermore, plasmon propagation velocities are analysed, and an explanation for the mismatch of longitudinal modes close to the intersection point with the dispersion of light is suggested. Finally, some concepts to treat this problem from the energy transport point of view are introduced.