4 resultados para IMAGERY
Resumo:
Accurate and fast decoding of speech imagery from electroencephalographic (EEG) data could serve as a basis for a new generation of brain computer interfaces (BCIs), more portable and easier to use. However, decoding of speech imagery from EEG is a hard problem due to many factors. In this paper we focus on the analysis of the classification step of speech imagery decoding for a three-class vowel speech imagery recognition problem. We empirically show that different classification subtasks may require different classifiers for accurately decoding and obtain a classification accuracy that improves the best results previously published. We further investigate the relationship between the classifiers and different sets of features selected by the common spatial patterns method. Our results indicate that further improvement on BCIs based on speech imagery could be achieved by carefully selecting an appropriate combination of classifiers for the subtasks involved.
Resumo:
222 p. : il.
Resumo:
A new supervised burned area mapping software named BAMS (Burned Area Mapping Software) is presented in this paper. The tool was built from standard ArcGIS (TM) libraries. It computes several of the spectral indexes most commonly used in burned area detection and implements a two-phase supervised strategy to map areas burned between two Landsat multitemporal images. The only input required from the user is the visual delimitation of a few burned areas, from which burned perimeters are extracted. After the discrimination of burned patches, the user can visually assess the results, and iteratively select additional sampling burned areas to improve the extent of the burned patches. The final result of the BAMS program is a polygon vector layer containing three categories: (a) burned perimeters, (b) unburned areas, and (c) non-observed areas. The latter refer to clouds or sensor observation errors. Outputs of the BAMS code meet the requirements of file formats and structure of standard validation protocols. This paper presents the tool's structure and technical basis. The program has been tested in six areas located in the United States, for various ecosystems and land covers, and then compared against the National Monitoring Trends in Burn Severity (MTBS) Burned Area Boundaries Dataset.
Resumo:
Locate full-text(opens in a new window)|View at Publisher|
Export
| Download
| More...
Atmospheric Measurement Techniques
Volume 8, Issue 5, 27 May 2015, Pages 2183-2193
Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services (Article)
Angulo, I.a,
Grande, O.a,
Jenn, D.b,
Guerra, D.a,
De La Vega, D.a
a University of the Basque Country (UPV/EHU), Bilbao, Spain
b Naval Postgraduate School, Monterey, United States
View references (28)
Abstract
The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver.
For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam.
This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.