2 resultados para Hypothalamus-pituitary-adrenal axis
Resumo:
Background: Budesonide has a long history as intranasal drug, with many marketed products. Efforts should be made to demonstrate the therapeutic equivalence and safety comparability between them. Given that systemic availability significantly varies from formulations, the clinical comparability of diverse products comes to be of clinical interest and a regulatory requirement. The aim of the present study was to compare the systemic availability, pharmacodynamic effect, and safety of two intranasal budesonide formulations for the treatment of rhinitis. Methods: Eighteen healthy volunteers participated in this randomised, controlled, crossover, clinical trial. On two separated days, subjects received a single dose of 512 mu g budesonide (4 puffs per nostril) from each of the assayed devices (Budesonida nasal 64 (R), Aldo-Union, Spain and Rhinocort 64 (R), AstraZeneca, Spain). Budesonide availability was determined by the measurement of budesonide plasma concentration. The pharmacodynamic effect on the hypothalamic-adrenal axis was evaluated as both plasma and urine cortisol levels. Adverse events were tabulated and described. Budesonide availability between formulations was compared by the calculation of 90% CI intervals of the ratios of the main pharmacokinetic parameters describing budesonide bioavailability. Plasma cortisol concentration-time curves were compared by means of a GLM for Repeated Measures. Urine cortisol excretion between formulations was compared through the Wilcoxon's test. Results: All the enroled volunteers successfully completed the study. Pharmacokinetic parameters were comparable in terms of AUC(t) (2.6 +/- 1.5 vs 2.2 +/- 0.7), AUCi (2.9 +/- 1.5 vs 2.4 +/- 0.7), t(max) (0.4 +/- 0.1 vs 0.4 +/- 0.2), C(max)/AUC(i) (0.3 +/- 0.1 vs 0.3 +/- 0.0), and MRT (5.0 +/- 1.4 vs 4.5 +/- 0.6), but not in the case of C(max) (0.9 +/- 0.3 vs 0.7 +/- 0.2) and t(1/2) (3.7 +/- 1.8 vs 2.9 +/- 0.4). The pharmacodynamic effects, measured as the effect over plasma and urine cortisol, were also comparables between both formulations. No severe adverse events were reported and tolerance was comparable between formulations. Conclusion: The systemic availability of intranasal budesonide was comparable for both formulations in terms of most pharmacokinetic parameters. The pharmacodynamic effect on hypothalamic-pituitary-adrenal axis was also similar. Side effects were scarce and equivalent between the two products. This methodology to compare different budesonide-containing devices is reliable and easy to perform, and should be recommended for similar products intented to be marketed or already on the market.
Resumo:
Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.