24 resultados para Herz-Type Hardy Spaces
Resumo:
[ES] Tras dos décadas dedicadas a la promoción de los espacios rurales las Asociaciones de Desarrollo Rural de Gipuzkoa se han convertido en el vehículo prioritario para el progreso de este tipo de espacios. Su trayectoria ha estado marcada por toda una sucesión de programas con objetivos diversos y directrices políticas y presupuestarias diferentes. Como consecuencia se ha creado un modelo de dinamización rural centrado en la comarca y caracterizado por la diversidad de acciones que aborda y por su capacidad para incorporar nuevos campos, por su alto grado de implicación en la coordinación, ejecución e incluso gestión de servicios y por su capacidad de incorporar actores al desarrollo de los espacios rurales. A pesar de lo acertado del modelo éste aún tiene asignaturas pendientes, especialmente su dependencia de la decisiones políticas que en cada momento se toman y como consecuencia su falta de autonomía, la excesiva ligazón que aún presenta con el que fue el objeto inicial de estas Asociaciones, la realización de infraestructuras y especialmente el estrépito fracaso que ha tenido su pretensión de incorporar a otras instituciones y departamentos además de los propiamente agrarios.
Resumo:
The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.
Resumo:
251 p.
Resumo:
Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.
Resumo:
A new coupled fixed point theorem related to the Pata contraction for mappings having the mixed monotone property in partially ordered complete metric spaces is established. It is shown that the coupled fixed point can be unique under some extra suitable conditions involving mid point lower or upper bound properties. Also the corresponding convergence rate is estimated when the iterates of our function converge to its coupled fixed point.
Resumo:
This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems.
Resumo:
Coincidence and common fixed point theorems for a class of 'Ciric-Suzuki hybrid contractions involving a multivalued and two single-valued maps in a metric space are obtained. Some applications including the existence of a common solution for certain class of functional equations arising in a dynamic programming are also discussed..
Resumo:
Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)
Resumo:
Eguíluz, Federico; Merino, Raquel; Olsen, Vickie; Pajares, Eterio; Santamaría, José Miguel (eds.)
Resumo:
Some results on fixed points related to the contractive compositions of bounded operators in a class of complete metric spaces which can be also considered as Banach's spaces are discussed through the paper. The class of composite operators under study can include, in particular, sequences of projection operators under, in general, oblique projective operators. In this paper we are concerned with composite operators which include sequences of pairs of contractive operators involving, in general, oblique projection operators. The results are generalized to sequences of, in general, nonconstant bounded closed operators which can have bounded, closed, and compact limit operators, such that the relevant composite sequences are also compact operators. It is proven that in both cases, Banach contraction principle guarantees the existence of unique fixed points under contractive conditions.
Resumo:
This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (K-Lambda)hybrid p-cyclic self-mappings relative to a Bregman distance Df, associated with a Gâteaux differentiable proper strictly convex function f in a smooth Banach space, where the real functions Lambda and K quantify the point-to-point hybrid and nonexpansive (or contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic hybrid self-mappings.
Resumo:
La tesis se ha centrado en la síntesis y caracterización estructural de materiales tipo perovskita: SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) y ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm). El estudio de las estructuras de los materiales se ha realizado mediante el análisis de los patrones de difracción en polvo de rayos-X, sincrotrón y/o neutrones. En el refinamiento por el método de Rietveld de las estructuras se han sustituido las coordenadas atómicas (el método más común), por coordenadas colectivas: las amplitudes de los modos que describen la distorsión de la fase prototipo. Los resultados generales para la serie SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni) a temperatura ambiente se ha recogido en un diagrama en el que se han indicado las amplitudes de los modos que transforman de acuerdo a las irreps en función del factor de tolerancia, ya que todos ellos cristalizan en la misma fase monoclínica (P21/n); y a temperaturas altas se ha construido un diagrama de fase. Los materiales SrLnFeRuO6 ( Ln=La,Pr,Nd) y CaLn2CuTi2O9 cristalizan en la fase ortorrómbica Pbnm a temperatura ambiente; mientras que BaLn2CuTi2O9 tienen una estructura más simétrica, I4/mcm. A altas temperaturas se han identificado las transiciones de fase inducidas por el cambio de temperatura.A temperaturas bajas se han analizado las estructuras magnéticas de algunos de los compuestos mediante difracción de neutrones.
Resumo:
This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable orthonormal bases.
Resumo:
9 p.
Resumo:
8 p.