1 resultado para Hand, foot and mouth disease
Filtro por publicador
- Aberdeen University (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (69)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (56)
- Brock University, Canada (5)
- CentAUR: Central Archive University of Reading - UK (42)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- Dalarna University College Electronic Archive (2)
- Deposito de Dissertacoes e Teses Digitais - Portugal (14)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (15)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (3)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (6)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (21)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (10)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (58)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- Scielo Saúde Pública - SP (118)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (185)
- Université de Montréal, Canada (2)
- University of Michigan (44)
- University of Queensland eSpace - Australia (90)
- University of Southampton, United Kingdom (3)
- University of Washington (4)
Resumo:
In the past few years, human facial age estimation has drawn a lot of attention in the computer vision and pattern recognition communities because of its important applications in age-based image retrieval, security control and surveillance, biomet- rics, human-computer interaction (HCI) and social robotics. In connection with these investigations, estimating the age of a person from the numerical analysis of his/her face image is a relatively new topic. Also, in problems such as Image Classification the Deep Neural Networks have given the best results in some areas including age estimation. In this work we use three hand-crafted features as well as five deep features that can be obtained from pre-trained deep convolutional neural networks. We do a comparative study of the obtained age estimation results with these features.