5 resultados para Geographical computer applications
Resumo:
Contributed to: Fusion of Cultures: XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
Contributed to: Fusion of Cultures. XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
[ES]En el trabajo que presentamos se revisan los nuevos enfoques de dirección de empresas basados en gestión de procesos y gestión de riesgos, y su influencia en el futuro de la información económica-financiera, lo que dará lugar a cambios acelerados por las más avanzadas aplicaciones informáticas de la contabilidad y las prácticas de auditoría, puesto que en la práctica diaria de las empresas, tanto la auditoría como la información contable y los sistemas de información, contemplan ya dicho enfoque de la contabilidad por procesos. En consecuencia, la evolución de los sistemas de información favorece, cuando no obliga, a que el profesional de la contabilidad empresarial adopte una visión de la misma según los nuevos puntos de vista basados en procesos, provocando nuevas aplicaciones informáticas a la contabilidad.
Resumo:
This report is an introduction to the concept of treewidth, a property of graphs that has important implications in algorithms. Some basic concepts of graph theory are presented in the first chapter for those readers that are not familiar with the notation. In Chapter 2, the definition of treewidth and some different ways of characterizing it are explained. The last two chapters focus on the algorithmic implications of treewidth, which are very relevant in Computer Science. An algorithm to compute the treewidth of a graph is presented and its result can be later applied to many other problems in graph theory, like those introduced in the last chapter.
Resumo:
Deep neural networks have recently gained popularity for improv- ing state-of-the-art machine learning algorithms in diverse areas such as speech recognition, computer vision and bioinformatics. Convolutional networks especially have shown prowess in visual recognition tasks such as object recognition and detection in which this work is focused on. Mod- ern award-winning architectures have systematically surpassed previous attempts at tackling computer vision problems and keep winning most current competitions. After a brief study of deep learning architectures and readily available frameworks and libraries, the LeNet handwriting digit recognition network study case is developed, and lastly a deep learn- ing network for playing simple videogames is reviewed.