5 resultados para Generalized model
Resumo:
Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H
Resumo:
Published as article in: Journal of Economic Dynamics and Control (2008), 32(May), pp. 1466-1488.
Resumo:
This paper analyzes the cyclical properties of a generalized version of Uzawa-Lucas endogenous growth model. We study the dynamic features of different cyclical components of this model characterized by a variety of decomposition methods. The decomposition methods considered can be classified in two groups. On the one hand, we consider three statistical filters: the Hodrick-Prescott filter, the Baxter-King filter and Gonzalo-Granger decomposition. On the other hand, we use four model-based decomposition methods. The latter decomposition procedures share the property that the cyclical components obtained by these methods preserve the log-linear approximation of the Euler-equation restrictions imposed by the agent’s intertemporal optimization problem. The paper shows that both model dynamics and model performance substantially vary across decomposition methods. A parallel exercise is carried out with a standard real business cycle model. The results should help researchers to better understand the performance of Uzawa-Lucas model in relation to standard business cycle models under alternative definitions of the business cycle.
Resumo:
[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.
Resumo:
[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.