8 resultados para General circulation models
Resumo:
Climate change is an important environmental problem and one whose economic implications are many and varied. This paper starts with the presumption that mitigation of greenhouse gases is a necessary policy that has to be designed in a cost effective way. It is well known that market instruments are the best option for cost effectiveness. But the discussion regarding which of the various market instruments should be used, how they may interact and what combinations of policies should be implemented is still open and very lively. In this paper we propose a combination of instruments: the marketable emission permits already in place in Europe for major economic sectors and a CO(2) tax for economic sectors not included in the emissions permit scheme. The study uses an applied general equilibrium model for the Spanish economy to compute the results obtained with the new mix of instruments proposed. As the combination of the market for emission permits and the CO(2) tax admits different possibilities that depend on how the mitigation is distributed among the economic sectors, we concentrate on four possibilities: cost-effective, equalitarian, proportional to emissions, and proportional to output distributions. Other alternatives to the CO(2) tax are also analysed (tax on energy, on oil and on electricity). Our findings suggest that careful, well designed policies are needed as any deviation imposes significant additional costs that increase more than proportionally to the level of emissions reduction targeted by the EU.
Resumo:
122 p.
Resumo:
The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.
Resumo:
Contributed to: Virtual Retrospect 2007 (Pessac, France, Nov 14-16, 2007)
Resumo:
142 p.
Resumo:
162 p.
Resumo:
196 p.
Resumo:
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.