6 resultados para Gains in selection
Resumo:
Prepared for the Handbook of the Economics of Cultural Heritage. Forthcoming in Edgard Elgar Publisher. Anna Mignosa and Ilde Rizzo (editors)
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
In this paper we propose a simple method of characterizing countervailing incentives in adverse selection problems. The key element in our characterization consists of analyzing properties of the full information problem. This allows solving the principal problem without using optimal control theory. Our methodology can also be applied to different economic settings: health economics, monopoly regulation, labour contracts, limited liabilities and environmental regulation.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.
Resumo:
Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.