4 resultados para Frequency chirp
Resumo:
179 p.
Resumo:
[EN] One universal feature of human languages is the division between grammatical functors and content words. From a learnability point of view, functors might provide entry points or anchors into the syntactic structure of utterances due to their high frequency. Despite its potentially universal scope, this hypothesis has not yet been tested on typologically different languages and on populations of different ages. Here we report a corpus study and an artificial grammar learning experiment testing the anchoring hypothesis in Basque, Japanese, French, and Italian adults. We show that adults are sensitive to the distribution of functors in their native language and use them when learning new linguistic material. However, compared to infants’ performance on a similar task, adults exhibit a slightly different behavior, matching the frequency distributions of their native language more closely than infants do. This finding bears on the issue of the continuity of language learning mechanism.
Resumo:
In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.
Resumo:
It has built and characterised a laser and It has learned what each of the components does. It has been able to run the laser in single-mode and stabilised it around a desired setpoint thanks to a PID controller that It has programmed. It has established a communication between the PID controller programmed in LabVIEW and Arduino Due, the DAC that It has chosen after comparing it with another candidate. It has learned some basics of how the LightCrafter 4500 DMD works. The projected light is the composition of the lights of three LED’s, each of which has a certain on-time. The mirrors chose to be in on- or off-stages depending to the amount of intensity that we want for each colour.