7 resultados para Fecal coliforms
Resumo:
283 p. : graf., map.
Resumo:
7 p.
Resumo:
Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.
Resumo:
243 p. : il.
Resumo:
Females of different species might exert female mate choice for different reasons, one of them the aim of avoiding inbreeding. In this study I examine the implication of inbreeding avoidance as a mechanism driving female mate choice in Verreaux’s sifaka lemurs (Propithecus verreauxi). In fact, in this species females are dominant and appear to be able to choose certain males to mate with, while observations indicate that rank, body size, canine size and proportions of fights won are not factors influencing female mate choice. So I hypothesized that females mate choice is driven by inbreeding avoidance in Verreaux’s sifaka lemurs. Tissue and fecal samples were collected in the Kirindy Mitea National Park in western Madagascar as a source of DNA. Parentage was assigned for a sample of the population and relatedness coefficients between dams and sires were estimated and compared to those of between random female and male pairs, dams and other candidate sires within the population and within the groups were the offspring were conceived. I found that there were no significant differences in none of the comparisons which means that Verreaux’s sifaka females do not mate more with males that are more distantly related to them. I concluded that inbreeding avoidance does not appear to be the main force driving female mate choice in Verreaux’s sifaka lemurs and I addressed explanations for these findings. With this study I contribute to our knowledge of female mate choice in lemurs.
Resumo:
Background: Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans. Methods: In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing. Samples were collected from American mink (Neovison vison), European mink (Mustela lutreola), European polecat (Mustela putorius), European pine marten (Martes martes), stone marten (Martes foina), Eurasian otter (Lutra lutra) and Eurasian badger (Meles meles) of the family of Mustelidae; common genet (Genetta genetta) of the family of Viverridae; red fox (Vulpes vulpes) of the family of Canidae and European wild cat (Felis silvestris) of the family of Felidae. Results: A number of sequences of possible novel viruses or virus variants were detected, including a theilovirus, phleboviruses, an amdovirus, a kobuvirus and picobirnaviruses. Conclusions: Using random PCR in combination with next generation sequencing, sequences of various novel viruses or virus variants were detected in fecal samples collected from Spanish carnivores. Detected novel viruses highlight the viral diversity that is present in fecal material of wild carnivores.
Resumo:
Background: Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. Methods: In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. Results: Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. Conclusions: We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.