16 resultados para Europe, Western
Resumo:
Revised: 2006-07
Resumo:
This paper shows the extraordinary capacity of yield spreads to anticipate consumption growth as proxy by the Economic Sentiment Indicator elaborated by the European Commission in order to predict turning points in business cycles. This new evidence complements the well known results regarding the usefulness of the slope of the term structure of interest rates to predict real economic conditions and, in particular, recessions by using a direct measure of expectations. A linear combination of European yield spreads explains a surprising 93.7% of the variability of the Economic Sentiment Indicator. Yield spreads seem to be a key determinant of consumer confidence in Europe.
Resumo:
6 p.
Resumo:
10 p.
Resumo:
Mª José García Soler ( editora).Anejos de VELEIA. Serie Minor nº 17
Resumo:
Raquel Merino Álvarez, José Miguel Santamaría, Eterio Pajares (eds.)
Resumo:
4 p.
Resumo:
23 p.
Resumo:
[ES] El trabajo realiza una aproximación a la situación actual de los estudios de ADN antiguo humano en Europa, recopilando los datos de los individuos analizados hasta 2013 (n=700), a modo de síntesis interpretativa continental y regional de los territorios para los cuales se han obtenido resultados significativos (Centroeuropa, Cornisa Cantábrica, Mediterráneo occidental, Escandinavia-Báltico-Rusia y Alpes orientales). Las hipótesis se expresan en términos de continuidad o discontinuidad genética entre los grupos humanos habitantes de un territorio, centradas en la problemática de la neolitización, en una horquilla cronocultural del Paleolítico superior a la Edad del Bronce. Los resultados se resumen en (1) una preponderancia del clado mitocondrial U para muestras preneolíticas; (2) la posibilidad de una intrusión démica en una fase inicial de la neolitización centroeuropea -tipo N1a, con pérdida posterior de ese haplogrupo mitocondrial-; (3) la evidencia del proceso neolitizador como heterogéneo y con diferente impacto a escala regional; (4) una estabilización del acervo genético europeo actual como resultado de eventos postneolíticos; y (5) las posibilidades analíticas de la genética aplicada a las poblaciones antiguas como un instrumento de gran interés, observándose la necesidad de realizar más analíticas con recorrido diacrónico.
Resumo:
Background: Health expectancy is a useful tool to monitor health inequalities. The evidence about the recent changes in social inequalities in healthy expectancy is relatively scarce and inconclusive, and most studies have focused on Anglo-Saxon and central or northern European countries. The objective of this study was to analyse the changes in socioeconomic inequalities in disability-free life expectancy in a Southern European population, the Basque Country, during the first decade of the 21st century. Methods: This was an ecological cross-sectional study of temporal trends on the Basque population in 1999-2003 and 2004-2008. All-cause mortality rate, life expectancy, prevalence of disability and disability free-life expectancy were calculated for each period according to the deprivation level of the area of residence. The slope index of inequality and the relative index of inequality were calculated to summarize and compare the inequalities in the two periods. Results: Disability free-life expectancy decreased as area deprivation increased both in men and in women. The difference between the most extreme groups in 2004-2008 was 6.7 years in men and 3.7 in women. Between 1999-2003 and 2004-2008, socioeconomic inequalities in life expectancy decreased, and inequalities in disability-free expectancy increased in men and decreased in women. Conclusions: This study found important socioeconomic inequalities in health expectancy in the Basque Country. These inequalities increased in men and decreased in women in the first decade of the 21st century, during which the Basque Country saw considerable economic growth.
Resumo:
Background: In the present study we have assessed whether the Carpathian Mountains represent a genetic barrier in East Europe. Therefore, we have analyzed the mtDNA of 128 native individuals of Romania: 62 of them from the North of Romania, and 66 from South Romania. Results: We have analyzed their mtDNA variability in the context of other European and Near Eastern populations through multivariate analyses. The results show that regarding the mtDNA haplogroup and haplotype distributions the Romanian groups living outside the Carpathian range (South Romania) displayed some degree of genetic differentiation compared to those living within the Carpahian range (North Romania). Conclusion: The main differentiation between the mtDNA variability of the groups from North and South Romania can be attributed to the demographic movements from East to West (prehistoric or historic) that differently affected in these regions, suggesting that the Carpathian mountain range represents a weak genetic barrier in South-East Europe.
Resumo:
Este trabajo ha sido realizado en el marco del Grupo de Investigación Consolidado GIC 07/21-IT.288.07.
Resumo:
Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Resumo:
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starcevo Cris culture in Romania (Carcea, Gura Baciului and Negrilesti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelnita cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.