8 resultados para Dynamics of Flows


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the extent to which a biased transmission of educational endowments affects fertility. To this end, we devise a version of Becker’s family decision model that takes preference change into account. Specifically, we model education as an instrument that increases the autonomy (to prefer), and autonomy as an instrument of preference-change for household-structures. The empirical validity of the proposed model is examined for the European setting using the European Community Household Panel. In the context of the model, empirical findings imply the following. On the one hand, both preference for quantity and preference for bequest for each offspring (quality) increases with education, while preference for current consumption decreases. On the other hand, education is found to be negatively correlated with fertility, at a decreasing rate. Therefore, the paper provides a useful additional toolkit for public policy evaluation. It explains how public policies oriented toward the guarantee of personal freedoms, such as the expansion of education and autonomy, are likely to guarantee the same freedoms for subsequent generations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EMM-FM2011 – First Euro Mediterranean Meeting on Functionalized Materials, edited by Cheikhrouhou, A. 1st Euro Mediterranean Meeting on Functionalized Materials (EMM-FM). Sousse, TUNISIA . Sep. 06-10, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H