5 resultados para Differential Inclusions with Constraints
Resumo:
This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.
Comparativa entre diferencial de baja impedancia de generador y de baja impedancia de transformador.
Resumo:
[ES]El objetivo principal de TFG es analizar y comparar el funcionamiento de las protecciones diferenciales de baja impedancia de generador y de transformador de potencia. Para ello, se describirán sus características principales de forma teórica y se realizarán simulaciones mediante el módulo SimPowersSystems contenido en Matlab.
Resumo:
This paper analyzes auctions where bidders face nancial constraints that may force them to resell part of the property of the good (or subcontract part of a project) at a resale market. First we show that the ine¢ cient speculative equilibria of second- price auctions (Garratt and Tröger, 2006) generalizes to situations with partial resale where only the high value bidder is nancially constrained. However, when all players face nancial constraints the ine¢ cient speculative equilibria disappear. Therefore, for auctioning big facilities or contracts where all bidders are nancially constrained and there is a resale market, the second price auction remains a simple and appropriate mechanism to achieve an e¢ cient allocation.
Resumo:
In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic programs based on first- and second-order stochastic dominance constraints induced by mixed-integer linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-artMIP solver is also reported.
Resumo:
This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.