6 resultados para Detection system
Resumo:
Nowadays, Power grids are critical infrastructures on which everything else relies, and their correct behavior is of the highest priority. New smart devices are being deployed to be able to manage and control power grids more efficiently and avoid instability. However, the deployment of such smart devices like Phasor Measurement Units (PMU) and Phasor Data Concentrators (PDC), open new opportunities for cyber attackers to exploit network vulnerabilities. If a PDC is compromised, all data coming from PMUs to that PDC is lost, reducing network observability. Our approach to solve this problem is to develop an Intrusion detection System (IDS) in a Software-defined network (SDN). allowing the IDS system to detect compromised devices and use that information as an input for a self-healing SDN controller, which redirects the data of the PMUs to a new, uncompromised PDC, maintaining the maximum possible network observability at every moment. During this research, we have successfully implemented Self-healing in an example network with an SDN controller based on Ryu controller. We have also assessed intrinsic vulnerabilities of Wide Area Management Systems (WAMS) and SCADA networks, and developed some rules for the Intrusion Detection system which specifically protect vulnerabilities of these networks. The integration of the IDS and the SDN controller was also successful. \\To achieve this goal, the first steps will be to implement an existing Self-healing SDN controller and assess intrinsic vulnerabilities of Wide Area Measurement Systems (WAMS) and SCADA networks. After that, we will integrate the Ryu controller with Snort, and create the Snort rules that are specific for SCADA or WAMS systems and protocols.
Resumo:
Background: Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder in humans included in the group of Transmissible Spongiform Encephalopathies or prion diseases. The vast majority of sCJD cases are molecularly classified according to the abnormal prion protein (PrPSc) conformations along with polymorphism of codon 129 of the PRNP gene. Recently, a novel human disease, termed "protease-sensitive prionopathy", has been described. This disease shows a distinct clinical and neuropathological phenotype and it is associated to an abnormal prion protein more sensitive to protease digestion. Case presentation: We report the case of a 75-year-old-man who developed a clinical course and presented pathologic lesions compatible with sporadic Creutzfeldt-Jakob disease, and biochemical findings reminiscent of "protease-sensitive prionopathy". Neuropathological examinations revealed spongiform change mainly affecting the cerebral cortex, putamen/globus pallidus and thalamus, accompanied by mild astrocytosis and microgliosis, with slight involvement of the cerebellum. Confluent vacuoles were absent. Diffuse synaptic PrP deposits in these regions were largely removed following proteinase treatment. PrP deposition, as revealed with 3F4 and 1E4 antibodies, was markedly sensitive to pre-treatment with proteinase K. Molecular analysis of PrPSc showed an abnormal prion protein more sensitive to proteinase K digestion, with a five-band pattern of 28, 24, 21, 19, and 16 kDa, and three aglycosylated isoforms of 19, 16 and 6 kDa. This PrPSc was estimated to be 80% susceptible to digestion while the pathogenic prion protein associated with classical forms of sporadic Creutzfeldt-Jakob disease were only 2% (type VV2) and 23% (type MM1) susceptible. No mutations in the PRNP gene were found and genotype for codon 129 was heterozygous methionine/valine. Conclusions: A novel form of human disease with abnormal prion protein sensitive to protease and MV at codon 129 was described. Although clinical signs were compatible with sporadic Creutzfeldt-Jakob disease, the molecular subtype with the abnormal prion protein isoforms showing enhanced protease sensitivity was reminiscent of the "protease-sensitive prionopathy". It remains to be established whether the differences found between the latter and this case are due to the polymorphism at codon 129. Different degrees of proteinase K susceptibility were easily determined with the chemical polymer detection system which could help to detect proteinase-susceptible pathologic prion protein in diseases other than the classical ones.
Resumo:
[ES]Este proyecto, fruto de mi Trabajo Fin de Grado, pretende describir los aspectos más relevantes de los Wireless Intrusion Detection System (WIDS), tales como su historia, funcionamiento, arquitecturas, implementación o futuro. Tras esto, se expondrá el objetivo principal del proyecto. Proponer una arquitectura genérica para los WIDS y crear Antikörper, un WIDS basado en Network IDS completamente funcional, que cubra totalmente las necesidades de seguridad actuales en las redes Wireless LAN y sea adaptable a futuras revisiones.
Resumo:
Preprint version
Resumo:
Cloud chambers were essential devices in early nuclear and particle physics research. Superseded by more modern detectors in actual research, they still remain very interesting pedagogical apparatus. This thesis attempts to give a global view on this topic. To do so, a review of the physical foundations of the diffusion cloud chamber, in which an alcohol is supersaturated by cooling it with a thermal reservoir, is carried out. Its main results are then applied to analyse the working conditions inside the chamber. The analysis remarks the importance of using an appropriate alcohol, such as isopropanol, as well as a strong cooling system, which for isopropanol needs to reach −40ºC. That theoretical study is complemented with experimental tests that were performed with what is the usual design of a home-made cloud chamber. An effective setup is established, which highlights details such as a grazing illumination, a direct contact with the cooling reservoir through a wide metal plate, or the importance of avoiding vapour removal. Apart from that, video results of different phenomena that cloud chamber allow to observe are also presented. Overall, it is aimed to present a physical insight that pedagogical papers usually lack.
Resumo:
Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system.