7 resultados para Design and manufacturing integration
Resumo:
[EN] Background: Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism of PCR products (PCR-RFLP) are extensively used molecular biology techniques. An exercise for the design and simulation of PCR and PCR-RFLP experiments will be a useful educational tool. Findings: An online PCR and PCR-RFLP exercise has been create that requires users to find the target genes,compare them, design primers, search for restriction endonucleases, and finally to simulate the experiment. Each user of the service is randomly assigned a gene from Escherichia coli; to complete the exercise, users must design an experiment capable of distinguishing among E. coli strains. By applying the experimental procedure to all completely sequenced E. coli, a basic understanding of strain comparison and clustering can also be acquired. Comparison of results obtained in different experiments is also very instructive. Conclusions: The exercise is freely available at http://insilico.ehu.es/edu.
Resumo:
In this paper we demonstrate the design of a low-cost optical current sensor. The sensor principle is the Faraday rotation of a light beam through a magneto-optical material, SF2, when a magnetic field is present. The prototype has a high sensitivity and a high linearity for currents ranging from 0 up to 800 A. The error of the optical fibre sensor is smaller than 1% for electric currents over 175 A.
Resumo:
9 p.
Resumo:
This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.
Resumo:
206 p.
Resumo:
[EN]For a good development of elastic optical networks, the design of flexible optical switching nodes is required. This work analyses the previously proposed flexible architectures and, based on the most appropriate, which is the Architecture on Demand (AoD), proposes a specific configuration of the node that includes spatial and spectral switching and the wavelength conversion functionality with a low blocking probability and the minimum amount of modules; the characteristics of the traffic that the designed node is able to cope with are specified in the last chapter. An evaluation of the designed node is also done, and, compared to the other architectures, it is shown that the Architecture on Demand gives better results than others and that it has a higher potential for future developments.
Resumo:
Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: To ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. Copyright: © 2015 Bildosola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.