6 resultados para Databases and Information Systems
Resumo:
Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized.
Resumo:
Paper presented at 12th Annual Conference of EAERE 2003 Bilbao (Spain)
Resumo:
21 p.
Resumo:
When it comes to information sets in real life, often pieces of the whole set may not be available. This problem can find its origin in various reasons, describing therefore different patterns. In the literature, this problem is known as Missing Data. This issue can be fixed in various ways, from not taking into consideration incomplete observations, to guessing what those values originally were, or just ignoring the fact that some values are missing. The methods used to estimate missing data are called Imputation Methods. The work presented in this thesis has two main goals. The first one is to determine whether any kind of interactions exists between Missing Data, Imputation Methods and Supervised Classification algorithms, when they are applied together. For this first problem we consider a scenario in which the databases used are discrete, understanding discrete as that it is assumed that there is no relation between observations. These datasets underwent processes involving different combina- tions of the three components mentioned. The outcome showed that the missing data pattern strongly influences the outcome produced by a classifier. Also, in some of the cases, the complex imputation techniques investigated in the thesis were able to obtain better results than simple ones. The second goal of this work is to propose a new imputation strategy, but this time we constrain the specifications of the previous problem to a special kind of datasets, the multivariate Time Series. We designed new imputation techniques for this particular domain, and combined them with some of the contrasted strategies tested in the pre- vious chapter of this thesis. The time series also were subjected to processes involving missing data and imputation to finally propose an overall better imputation method. In the final chapter of this work, a real-world example is presented, describing a wa- ter quality prediction problem. The databases that characterized this problem had their own original latent values, which provides a real-world benchmark to test the algorithms developed in this thesis.
Resumo:
[EN]The generation of spikes by neurons is energetically a costly process and the evaluation of the metabolic energy required to maintain the signaling activity of neurons a challenge of practical interest. Neuron models are frequently used to represent the dynamics of real neurons but hardly ever to evaluate the electrochemical energy required to maintain that dynamics. This paper discusses the interpretation of a Hodgkin-Huxley circuit as an energy model for real biological neurons and uses it to evaluate the consumption of metabolic energy in the transmission of information between neurons coupled by electrical synapses, i.e., gap junctions. We show that for a single postsynaptic neuron maximum energy efficiency, measured in bits of mutual information per molecule of adenosine triphosphate (ATP) consumed, requires maximum energy consumption. For groups of parallel postsynaptic neurons we determine values of the synaptic conductance at which the energy efficiency of the transmission presents clear maxima at relatively very low values of metabolic energy consumption. Contrary to what could be expected, the best performance occurs at a low energy cost.
Resumo:
Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving involves a basic two-fold goal: the ability to exist as an individual in one's own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, where attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics, in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor toward which dyadic states tend to move, and well-being when this attractor is in balance with the individuals' attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting that supports clients to become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple) and therapist, strategies to co-negotiate their self-organization.