5 resultados para DM
Resumo:
[EN]A study was conducted on crossbred steers (n=275; 376±924 kg) to evaluate performance and carcass quality of cattle fed wheat or corn dried distillers’ grains with solubles (DDGS). The control ration contained 86.6% rolled barley grain, 5.7% supplement and 7.7% barley silage (DM basis). The four treatments included replacement of barley grain at 20 or 40% of the diet (DM basis) with wheat or corn DDGS. Steers were slaughtered at a common end weight of 645 kg with 100 steers randomly (n=20 per treatment) selected for determination of the retail yield of sub-primal boneless boxed beef (SPBBB). Data were analyzed as a completely randomized design using pen as the experimental unit. Feeding increasing levels of wheat DDGS led to a quadratic increase in dry matter intake (DMI) (P<0.01), whereas increasing levels of corn DDGS led to a quadratic decrease in DMI (P=0.01). Average daily gain was not influenced (P=0.13) by feeding wheat or corn DDGS, but cattle fed corn DDGS exhibited a quadratic increase (P=0.01) in gain:feed. As a result, a quadratic increase (P<0.01) in calculated NEg of the diet was observed as corn DDGS levels increased. A linear decrease (P=0.04) in days on feed (169, 166 and 154 d) was noted when increasing levels of wheat DDGS (0, 20 and 40%) were fed. Dressing percentage increased in a linear fashion with wheat DDGS (P<0.01) inclusion level and in a quadratic fashion (P=0.01) as corn DDGS inclusion level increased although other carcass traits were not affected (P=0.10) by treatment. The results indicate that replacement of barley grain with corn or wheat DDGS up to 40% of the diet (DM) can lead to superior performance (improved gain:feed or reduced days on feed, respectively) with no detrimental effect on quality grade or carcass SPBBB yield.
Resumo:
11 p.
Resumo:
We analysed the whole-genome transcriptional profile of 6 cell lines of dark melanocytes (DM) and 6 of light melanocytes (LM) at basal conditions and after ultraviolet-B (UVB) radiation at different time points to investigate the mechanisms by which melanocytes protect human skin from the damaging effects of UVB. Further, we assessed the effect of different keratinocyte-conditioned media (KCM+ and KCM-) on melanocytes. Our results suggest that an interaction between ribosomal proteins and the P53 signaling pathway may occur in response to UVB in both DM and LM. We also observed that DM and LM show differentially expressed genes after irradiation, in particular at the first 6h after UVB. These are mainly associated with inflammatory reactions, cell survival or melanoma. Furthermore, the culture with KCM+ compared with KCM- had a noticeable effect on LM. This effect includes the activation of various signaling pathways such as the mTOR pathway, involved in the regulation of cell metabolism, growth, proliferation and survival. Finally, the comparison of the transcriptional profiles between LM and DM under basal conditions, and the application of natural selection tests in human populations allowed us to support the significant evolutionary role of MIF and ATP6V0B in the pigmentary phenotype.
Resumo:
Background: There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors. Results: To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1(G93A) mice, the most widely used animal model of ALS. We first identified unique hSOD1(G93A) microglia transcriptomic profile that, in addition to more classical processes such as chemotaxis and immune response, pointed toward the potential involvement of the tumour suppressor gene breast cancer susceptibility gene 1 (Brca1). Secondly, comparison with our previous data on hSOD1(G93A) motoneurone gene profile substantiated the putative contribution of Brca1 in ALS. Finally, we established that Brca1 protein is specifically expressed in human spinal microglia and is up-regulated in ALS patients. Conclusions: Overall, our data provide new insights into the pathogenic concept of a non-cell-autonomous disease and the involvement of microglia in ALS. Importantly, the identification of Brca1 as a novel microglial marker and as possible contributor in both human and animal model of ALS may represent a valid therapeutic target. Moreover, our data points toward novel research strategies such as investigating the role of oncogenic proteins in neurodegenerative diseases.
Resumo:
Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.