3 resultados para Convex Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1972, Maschler, Peleg and Shapley proved that in the class of convex the nucleolus and the kernel coincide. The only aim of this note is to provide a shorter, alternative proof of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the SD-prenucleolus satisfies monotonicity in the class of convex games. The SD-prenucleolus is thus the only known continuous core concept that satisfies monotonicity for convex games. We also prove that for convex games the SD-prenucleolus and the SD-prekernel coincide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer