2 resultados para Computational music theory
Resumo:
This paper proposes a new method for local key and chord estimation from audio signals. This method relies primarily on principles from music theory, and does not require any training on a corpus of labelled audio files. A harmonic content of the musical piece is first extracted by computing a set of chroma vectors. A set of chord/key pairs is selected for every frame by correlation with fixed chord and key templates. An acyclic harmonic graph is constructed with these pairs as vertices, using a musical distance to weigh its edges. Finally, the sequences of chords and keys are obtained by finding the best path in the graph using dynamic programming. The proposed method allows a mutual chord and key estimation. It is evaluated on a corpus composed of Beatles songs for both the local key estimation and chord recognition tasks, as well as a larger corpus composed of songs taken from the Billboard dataset.
Resumo:
149 p. : il. col.