3 resultados para Bit error rate
Resumo:
Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Resumo:
[Es]Este documento explica el procedimiento seguido para desarrollar la última etapa de un decodificador de DVB-T2, que consiste en la extracción de un archivo de vídeo desde un archivo binario resultante del resto del decodificador. Este decodificador se trata del software de un receptor desarrollado por el departamento de TSR (Tratamiento de Señal y Radiocomunicaciones) de la Escuela de Ingenieros de Bilbao en el año 2010. Dicho software es capaz de analizar la señal recibida de DVB-T2 para calcular la tasa de errores y conocer otros parámetros relevantes como el tipo de modulación utilizado. No obstante, para analizar de manera subjetiva las mejoras de DVB-T2 e incluso para determinar de qué manera afectan los errores a la calidad de la imagen es necesario visualizar el video transmitido. Por esta razón se ha comenzado un proyecto en el que el objetivo es programar un nuevo software que proporcione un archivo que contenga el video en cuestión. Este software se ha programado en lenguaje del programa Matlab, y toma el fichero resultante del receptor como entrada, para procesarlo y obtener uno nuevo con el vídeo. De modo que una vez programado y probado para su corrección, se aplica a continuación del receptor del departamento TSR. Una vez obtenido el vídeo es posible comparar la calidad de la imagen con diferentes tasas de error en la comunicación, simulando transmisiones en diferentes ámbitos cada uno con su correspondiente ruido. De esta manera, se estima con muy alta precisión el comportamiento de una transmisión real dependiendo de la climatología y otros factores que afecten a la relación señal a ruido.
Resumo:
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.