3 resultados para Behavioral teratology
Resumo:
Binmore and Samuelson (1999) have shown that perturbations (drift) are crucial to study the stability properties of Nash equilibria. We contribute to this literature by providing a behavioural foundation for models of evolutionary drift. In particular, this article introduces a microeconomic model of drift based on the similarity theory developed by Tversky (1977), Kahneman and Tversky (1979) and Rubinstein (1988),(1998). An innovation with respect to those works is that we deal with similarity relations that are derived from the perception that each agent has about how well he is playing the game. In addition, the similarity relations are adapted to a dynamic setting. We obtain different models of drift depending on how we model the agent´s assessment of his behaviour in the game. The examples of the ultimatum game and the chain-store game are used to show the conditions for each model to stabilize elements in the component of Nash equilibria that are not subgame- perfect. It is also shown how some models approximate the laboratory data about those games while others match the data.
Resumo:
Background: Maladaptive behavior has been reported as a phenotypical feature in Prader–Willi syndrome (PWS). It severely limits social adaptation and the quality of life of children and adults with the syndrome. Different factors have been linked with the intensity and form of these behavioral disturbances but there is no consensus about the cause. Consequently, there is still controversy regarding management strategies and there is a need for new data. Methods: The behavior of 100 adults with PWS attending a dedicated center was assessed using the Developmental Behavior Checklist for Adults (DBC-A) and the PWS-specific Hyperphagia Questionnaire. The DBC-A was completed separately by trained caregivers at the center and relatives or caregivers in a natural setting. Genotype, gender, age, degree of obesity and cognitive impairment were analyzed as variables with a hypothetical influence on behavioral features. Results: Patients showed a relatively high rate of behavioral disturbances other than hyperphagia. Disruptive and social relating were the highest scoring DBC-A subscales whereas anxiety/antisocial and self-absorbed were the lowest. When hospital caregiver and natural caregiver scores were compared, scores for the latter were higher for all subscales except for disruptive and anxiety/antisocial. These effects of institutional management were underlined. In the DBC-A, 22 items have descriptive indications of PWS behavior and were used for further comparisons and correlation analysis. In contrast to previous reports, rates of disturbed behavior were lower in patients with a deletion genotype. However, the behavioral profile was similar for both genotypes. No differences were found in any measurement when comparing type I and type II deletions. The other analyzed variables showed little relevance. Conclusions: Significant rates of behavioral disorders were highlighted and their typology described in a large cohort of adults with PWS. The deletion genotype was related to a lower severity of symptoms. Some major behavioral problems, such as hyperphagia, may be well controlled if living circumstances are adapted to the specific requirements of individuals with PWS.
Resumo:
Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D-1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia.