2 resultados para Automatic Calibration
Resumo:
In a time when Technology Supported Learning Systems are being widely used, there is a lack of tools that allows their development in an automatic or semi-automatic way. Technology Supported Learning Systems require an appropriate Domain Module, ie. the pedagogical representation of the domain to be mastered, in order to be effective. However, content authoring is a time and effort consuming task, therefore, efforts in automatising the Domain Module acquisition are necessary.Traditionally, textbooks have been used as the main mechanism to maintain and transmit the knowledge of a certain subject or domain. Textbooks have been authored by domain experts who have organised the contents in a means that facilitate understanding and learning, considering pedagogical issues.Given that textbooks are appropriate sources of information, they can be used to facilitate the development of the Domain Module allowing the identification of the topics to be mastered and the pedagogical relationships among them, as well as the extraction of Learning Objects, ie. meaningful fragments of the textbook with educational purpose.Consequently, in this work DOM-Sortze, a framework for the semi-automatic construction of Domain Modules from electronic textbooks, has been developed. DOM-Sortze uses NLP techniques, heuristic reasoning and ontologies to fulfill its work. DOM-Sortze has been designed and developed with the aim of automatising the development of the Domain Module, regardless of the subject, promoting the knowledge reuse and facilitating the collaboration of the users during the process.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.