5 resultados para Anita Cobby
Resumo:
Background: To know how moderate-to-vigorous physical activity (MVPA) and sedentary time change across lifespan periods is needed for designing successful lifestyle interventions. We aimed to study changes in objectively measured (accelerometry) MVPA and sedentary time from childhood to adolescence and from adolescence to young adulthood. Methods: Estonian and Swedish participants from the European Youth Heart Study aged 9 and 15 years at baseline (N = 2312) were asked to participate in a second examination 6 (Sweden) to 9/10 (Estonia) years later. 1800 participants with valid accelerometer data were analyzed. Results: MVPA decreased from childhood to adolescence (21 to 22.5 min/d per year of follow-up, P = 0.01 and ,0.001, for girls and boys respectively) and also from adolescence to young adulthood (20.8 to 22.2 min/d per year, P = 0.02 and ,0.001 for girls and boys, respectively). Sedentary time increased from childhood to adolescence (+15 and +20 min/d per year, for girls and boys respectively, P,0.001), with no substantial change from adolescence to young adulthood. Changes in both MVPA and sedentary time were greater in Swedish than in Estonian participants and in boys than in girls. The magnitude of the change observed in sedentary time was 3–6 time larger than the change observed in MVPA. Conclusions: The decline in MVPA (overall change = 30 min/d) and increase sedentary time (overall change = 2:45 h/d)observed from childhood to adolescence are of concern and might increase the risk of developing obesity and other chronic diseases later in life. These findings substantially contribute to understand how key health-related behaviors (physical activity and sedentary) change across important periods of life.
Resumo:
21 p.
Resumo:
Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity are, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.
Resumo:
This paper presents a business plan to create a new company Bomboy & Friends regarding the Exclusive Distribution of a fully Eco Friendly Water-Soluble Anti- Corrosive Prime named Life Guard Active Rust Primer Paint abbreviated as “L.G.A.R.P Paint” in Douala Cameroon and the C.E.M.A.C Region. The lack of quality paint in Cameroon has given the opportunity for a company like Bomboy & Friends to nurture its existence and be part of a fast growing economy, providing a high quality paint competition, very economical, easy to prepare, environmentally friendly, compatible with other brands and accessible to medium and small size companies.
Resumo:
Arduino plataforma erabiliaz, hiru funtzio betetzen dituen barne errobot esploratzaile bat sortu da. Funtzioak honakoak dira; oztopoak gainditzen dituen errobot mugikorra, urrunetik gidatutako errobota eta barne lokalizazio sistema.