2 resultados para Anisotropic diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new efficient numerical approach for representing anisotropic physical quantities and/or matrix elements defined on the Fermi surface (FS) of metallic materials. The method introduces a set of numerically calculated generalized orthonormal functions which are the solutions of the Helmholtz equation defined on the FS. Noteworthy, many properties of our proposed basis set are also shared by the FS harmonics introduced by Philip B Allen (1976 Phys. Rev. B 13 1416), proposed to be constructed as polynomials of the cartesian components of the electronic velocity. The main motivation of both approaches is identical, to handle anisotropic problems efficiently. However, in our approach the basis set is defined as the eigenfunctions of a differential operator and several desirable properties are introduced by construction. The method is demonstrated to be very robust in handling problems with any crystal structure or topology of the FS, and the periodicity of the reciprocal space is treated as a boundary condition for our Helmholtz equation. We illustrate the method by analysing the free-electron-like lithium (Li), sodium (Na), copper (Cu), lead (Pb), tungsten (W) and magnesium diboride (MgB2)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical comparison method to detect possible anisotropic features. Unlike some previous works where nondiagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of previously claimed detections of a preferred direction in the Union2 dataset completely disappears once we include the effects of using the full covariance matrix. Moreover, we also find that such apreferred direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, after removal of the highest in homogeneous sub-samples, the number of SNIa is too low. Finally, we take advantage of the particular distribution of SNLS SNIa sub- sample in the SNLS3 data set, in which the observations were taken along four different directions. We fit each direction independently and find consistent results at the 1 sigma level. Although the likelihoods peak at relatively different values of Omega(m), the low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently broad as to overlap within 1 sigma. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons. org/licenses/by/4.0/).